Orthogonality - Subordination - Freeness Convolutions and Graph Products

Romuald Lenczewski

Department of Mathematics and Computer Science Wroclaw University of Technology

Bedlewo, September 2006
(1) Orthogonal structures.
(2) Subordinate structures.
(3) Decompositions of the free additive convolution.
(9) Orthogonal product of graphs.
(5) Subordinate product of graphs and its decomposition.
(0) Decompositions of the free product of graphs.

Motivations

(1) Find relations between noncommutative probability theories associated with the main notions of noncommutative independence:
(1) tensor
(2) free
(3) boolean
(4) monotone
(2) Study relations between the associated convolutions of probability measures.
(3) Associate products of rooted graphs with the main notions of noncommutative independence: Cartesian, free, star, comb
(9) Find relations between these products.

Noncommutative independence

Assummptions:
(1) $\mathcal{A}_{1}, \mathcal{A}_{2}$ be subalgebras of a unital algebra \mathcal{A}
(2) φ - normalized linear functional on \mathcal{A}.
(3) $a_{1}, a_{2}, \ldots \in \mathcal{A}_{1}$
(9) $b_{1}, b_{2}, \ldots \in \mathcal{A}_{2}$

Types of independence

(1) tensor independence

$$
\varphi\left(a_{1} b_{1} a_{2} b_{2} \ldots\right)=\varphi\left(a_{1} a_{2} \ldots\right) \varphi\left(b_{1} b_{2} \ldots\right)
$$

(2) free independence (Voiculescu 1985, Avitzour 1982)

$$
\varphi\left(a_{1} b_{1} a_{2} b_{2} \ldots\right)=0
$$

whenever $a_{i}, b_{i} \in \operatorname{ker} \varphi$ for every i
(3) boolean independence (regular free - Bożejko 1986)

$$
\varphi\left(a_{1} b_{1} a_{2} b_{2} \ldots\right)=\varphi\left(a_{1}\right) \varphi\left(b_{1}\right) \varphi\left(a_{2}\right) \varphi\left(b_{2}\right) \ldots
$$

(4) monotone independence (Muraki 2001)

$$
\varphi\left(a_{1} b_{1} a_{2} b_{2} \ldots\right)=\varphi\left(a_{1} a_{2} \ldots\right) \varphi\left(b_{1}\right) \varphi\left(b_{2}\right) \ldots
$$

Rooted graphs

Basic definitions:
(1) By a rooted graph we understand a pair (\mathcal{G}, e), where $\mathcal{G}=(V, E)$ is a locally finite non-oriented connected simple graph (no loops, no multiple edges) and e is a selected vertex.
(2) By the spectral distribution of (\mathcal{G}, e) we understand the distribution of the adjacency matrix $A(\mathcal{G})$ in the state φ associated with the root e.

Comb product

Definition

The comb product of rooted graphs $\left(\mathcal{G}_{1}, e_{1}\right)$ and $\left(\mathcal{G}_{2}, e_{2}\right)$ is the rooted graph ($\left.\mathcal{G}_{1} \triangleright \mathcal{G}_{2}, e\right)$ obtained by attaching a copy of \mathcal{G}_{2} by its root e_{2} to each vertex of \mathcal{G}_{1}, where e is the vertex obtained by identifying e_{1} and e_{2}.

Example

Monotone decomposition of the comb product

Decomposition Theorem [Accardi, Ben Ghorbal, Obata]

Let $\left(\mathcal{G}_{1}, e_{1}\right)$ and $\left(\mathcal{G}_{2}, e_{2}\right)$ be rooted graphs with spectral distributions μ and ν, respectively. Then, the adjacency matrix of their comb product can be decomposed as

$$
A\left(\mathcal{G}_{1} \triangleright \mathcal{G}_{2}\right)=A^{(1)}+A^{(2)}
$$

where $A^{(1)}$ and $A^{(2)}$ are monotone independent w.r.t. $\varphi()=.\langle. \delta(e), \delta(e)\rangle$. Moreover, the spectral distribution of $\left(\mathcal{G}_{1} \triangleright \mathcal{G}_{2}, e\right)$ is given by $\mu \triangleright \nu$.

Tensor product realization

Tensor product realization

The summands in the comb product can be identified with

$$
A^{(1)}=A_{1} \otimes 1, \quad A^{(2)}=P_{1} \otimes A_{2}
$$

where A_{1} and A_{2} are the adjacency matrices of graphs \mathcal{G}_{1} and \mathcal{G}_{2} and P_{1} is the projection onto $\mathbb{C} \delta\left(e_{1}\right)$.

Star product

Definition

The star product of $\left(\mathcal{G}_{1}, e_{1}\right)$ and $\left(\mathcal{G}_{2}, e_{2}\right)$ is the graph $\left(\mathcal{G}_{1} \star \mathcal{G}_{2}, e\right)$ obtained by attaching a copy of \mathcal{G}_{2} by its root e_{2} to the root e_{1} of \mathcal{G}_{1}, where e is the vertex obtained by identifying e_{1} and e_{2}.

Example

Boolean decomposition of the star product

Decomposition Theorem [R.L., Obata]

Let $\left(\mathcal{G}_{1}, e_{1}\right)$ and $\left(\mathcal{G}_{2}, e_{2}\right)$ be rooted graphs with spectral distributions μ and ν, respectively. Then, the adjacency matrix of their star product can be decomposed as

$$
A\left(\mathcal{G}_{1} \star \mathcal{G}_{2}\right)=A^{(1)}+A^{(2)}
$$

where $A^{(1)}$ and $A^{(2)}$ are boolean independent w.r.t. φ, where $\varphi()=.\langle. \delta(e), \delta(e)\rangle$. Moreover, the spectral distribution of $\left(\mathcal{G}_{1} \star \mathcal{G}_{2}, e\right)$ is given by the boolean convolution $\mu \uplus \nu$.

Tensor product realization

Tensor realization of star product

The summands in the star product can be identified with

$$
A^{(1)}=A_{1} \otimes P_{2}, \quad A^{(2)}=P_{1} \otimes A_{2}
$$

where P_{i} is the projection onto $\mathbb{C} \delta\left(e_{i}\right)$.

Orthogonal product

Definition

The orthogonal product of two rooted graphs $\left(\mathcal{G}_{1}, e_{1}\right)$ and $\left(\mathcal{G}_{2}, e_{2}\right)$ is the rooted graph $\left(\mathcal{G}_{1} \vdash \mathcal{G}_{2}, e\right)$ obtained by attaching a copy of \mathcal{G}_{2} by its root e_{2} to each vertex of \mathcal{G}_{1} but the root e_{1}, where e is taken to be equal to e_{1}.

Example

Orthogonal subalgebras and convolutions

Definition

Let $(\mathcal{A}, \varphi, \psi)$ be a unital algebra with a pair of linear normalized functionals and let \mathcal{A}_{1} and \mathcal{A}_{2} be non-unital subalgebras of \mathcal{A}. We say that \mathcal{A}_{2} is orthogonal to \mathcal{A}_{1} with respect to (φ, ψ) if
(1) $\varphi\left(b w_{2}\right)=\varphi\left(w_{1} b\right)=0$
(2) $\varphi\left(w_{1} a_{1} b a_{2} w_{2}\right)=\psi(b)\left(\varphi\left(w_{1} a_{1} a_{2} w_{2}\right)-\varphi\left(w_{1} a_{1}\right) \varphi\left(a_{2} w_{2}\right)\right)$ for any $a_{1}, a_{2} \in \mathcal{A}_{1}, b \in \mathcal{A}_{2}$ and any $w_{1}, w_{2} \in \operatorname{alg}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$
We say that the pair (a, b) of elements of \mathcal{A} is orthogonal with respect to (φ, ψ) if the algebra generated by $a \in \mathcal{A}$ is orthogonal to the algebra generated by $b \in \mathcal{A}$.

Orthogonal convolution

Definition

Let $(a, b) \in \mathcal{A}$ be an orthogonal pair of elements of \mathcal{A}, μ - the φ-distribution of a and ν - the ψ-distribution of b. By the orthogonal convolution of μ and ν, denoted $\mu \vdash \nu$, we understand the φ-distribution of $a+b$.

Moments

Moments of low orders:

$$
\begin{aligned}
(\mu \vdash \nu)(1)= & \mu(1) \\
(\mu \vdash \nu)(2)= & \mu(2) \\
(\mu \vdash \nu)(3)= & \mu(3)+\left(\mu(2)-\mu^{2}(1)\right) \nu(1) \\
(\mu \vdash \nu)(4)= & \mu(4)+2 \mu(3) \nu(1)+\mu(2) \nu(2) \\
& -2 \mu(2) \mu(1) \nu(1)-\mu^{2}(1) \nu(2)
\end{aligned}
$$

Decomposition of the orthogonal product

Decomposititon Theorem [R.L.]

Let $\left(\mathcal{G}_{1}, e_{1}\right)$ and $\left(\mathcal{G}_{2}, e_{2}\right)$ be rooted graphs with spectral distributions μ and ν, respectively. Then
(1) the adjacency matrix of their orthogonal product can be decomposed as

$$
A\left(\mathcal{G}_{1} \vdash \mathcal{G}_{2}\right)=A^{(1)}+A^{(2)}
$$

where the pair $\left(A^{(1)}, A^{(2)}\right)$ is orthogonal w.r.t. (φ, ψ), with φ and ψ states associated with vectors $\delta(e), \delta(v) \in I_{2}\left(V_{1} \vdash V_{2}\right)$ and $v \in V_{1}^{0}$, where $V_{1}^{0}=V_{1} \backslash\left\{e_{1}\right\}$,
(2) the spectral distribution of $\left(\mathcal{G}_{1} \vdash \mathcal{G}_{2}, e\right)$ is given by $\mu \vdash \nu$.

Tensor product realization

Tensor realization of orthogonal product
The summands in the orthogonal product can be identified with

$$
A^{(1)}=A_{1} \otimes P_{2}, \quad A^{(2)}=P_{1}^{\perp} \otimes A_{2}
$$

where P_{i} is the projection onto $\mathbb{C} \delta\left(e_{i}\right)$.

Transforms of probability measures on the real line

(1) the Cauchy-transform of μ :

$$
G_{\mu}(z)=\sum_{n=0}^{\infty} m_{\mu}(n) z^{-n-1}=\int_{\mathbf{R}} \frac{d \mu(t)}{z-t}
$$

(2) the R-transform of μ :

$$
R_{\mu}(z)=G_{\mu}^{-1}(z)-\frac{1}{z}
$$

Transforms of probability measures on the real line
(1) the K-transform of μ :

$$
K_{\mu}(z)=z-\frac{1}{G_{\mu}(z)}
$$

(2) the reciprocal Cauchy transform of μ :

$$
F_{\mu}(z)=\frac{1}{G_{\mu}(z)}
$$

Transforms associated with convolutions

The following transforms are important:
(1) $R_{\mu}(z)$ - free additive convolution $\mu \boxplus \nu$ - addition formula (Voiculescu)
(2) $K_{\mu}(z)$ - boolean convolution $\mu \uplus \nu$ - addition formula (Speicher Woroudi)
(3) $F_{\mu}(z)$-monotone convolution $\mu \triangleright \nu$ - composition formula (Muraki)

Orthogonal convolution in terms of transforms

Theorem [R.L.]

Let μ and ν be probability measures on the real line. The reciprocal Cauchy transform of $\mu \vdash \nu$ is given by the formula

$$
F_{\mu \vdash \nu}(z)=F_{\mu}\left(F_{\nu}(z)\right)-F_{\nu}(z)+z
$$

Equivalently, we have

$$
K_{\mu \vdash \nu}(z)=K_{\mu}\left(F_{\nu}(z)\right)=K_{\mu}\left(z-K_{\nu}(z)\right)
$$

Remark

Compare with the monotone convolution

$$
F_{\mu \triangleright \nu}(z)=F_{\mu}\left(F_{\nu}(z)\right)
$$

established by Muraki.

Free product of rooted graphs

Definition

By the free product of rooted sets $\left(V_{1}, e_{1}\right) *\left(V_{2}, e_{2}\right)$ we understand the rooted set $\left(V_{1} * V_{2}, e\right)$, where

$$
V_{1} * V_{2}=\{e\} \cup\left\{v_{1} v_{2} \ldots v_{m} ; v_{k} \in V_{i_{k}}^{0} \wedge i_{1} \neq i_{2} \neq \ldots \neq i_{n}, m \in \mathbb{N}\right\}
$$ and e is the empty word.

Definition

By the free product of rooted graphs $\left(\mathcal{G}_{1}, e_{1}\right) *\left(\mathcal{G}_{2}, e_{2}\right)$, or simply $\mathcal{G}_{1} * \mathcal{G}_{2}$, we understand the rooted graph $\left(V_{1} * V_{2}, E_{1} * E_{2}, e\right)$ where

$$
E_{1} * E_{2}=\left\{\left\{v u, v^{\prime} u\right\}:\left\{v, v^{\prime}\right\} \in \bigcup_{i=1,2} E_{i} \text { and } u, v u, v^{\prime} u \in V_{1} * V_{2}\right\}
$$

Free hierarchy of products

Definition

By the m-free product of rooted graphs we understand the subgraph of $\mathcal{G}_{1} * \mathcal{G}_{2}$ obtained by restricting the set of vertices to words of lenght $\leqslant m$ with the root e.
Notation: $\left(\mathcal{G}_{1}, e_{1}\right) *^{(m)}\left(\mathcal{G}_{2}, e_{2}\right)$ or $\left(\mathcal{G}_{1} *^{(m)} \mathcal{G}_{2}, e\right)$.

Example

4-free product $\left(\mathcal{G}_{1}, e_{1}\right) *{ }^{(4)}\left(\mathcal{G}_{2}, e_{2}\right)$ with selected vertices labelled.

$$
\mathbb{T}_{2} \cong \mathbb{T}_{1} * \mathbb{T}_{1}
$$

Homogenous tree

$$
\left.\begin{array}{l}
y_{2} \\
y_{1} \\
e_{2} \\
y_{-1} \\
y_{-2}
\end{array}\right\}
$$

$\mathbb{H}_{4} \cong \mathbb{H}_{2} * \mathbb{H}_{2}$.

Notation:
$W_{i}(n)=\left\{v_{1} v_{2} \ldots v_{n} \in V_{1} * V_{2}: \quad v_{1} \notin V_{i}^{0}\right\}$
$P_{i}(n): I_{2}\left(V_{1} * V_{2}\right) \rightarrow I_{2}\left(W_{i}(n)\right), n \geqslant 1$
$P_{i}(0): I_{2}\left(V_{1} * V_{2}\right) \rightarrow \mathbb{C} \delta(e), i=1,2$.
φ - vacuum expectation on $I_{2}\left(V_{1} * V_{2}\right)$

Decomposition Theorem

Decomposition Theorem [Accardi, R.L., Salapata]

The adjacency matrix $A\left(\mathcal{G}_{1} * \mathcal{G}_{2}\right)$ admits a decomposition of the form

$$
A\left(\mathcal{G}_{1} * \mathcal{G}_{2}\right)=A^{(1)}+A^{(2)}
$$

where $A^{(1)}$ and $A^{(2)}$ are free w.r.t. φ. Moreover,

$$
A^{(i)}=\sum_{n=1}^{\infty} A_{i}(n)=\sum_{n=1}^{\infty} A_{i} P_{i}(n-1)
$$

where the action of A_{i} is given by $A_{i} \delta(x u)=\delta\left(x^{\prime} u\right)$ whenever $\left\{x, x^{\prime}\right\} \in E_{i}$ for $i=1,2$.

Spectral distribution

Corollary

Let μ and ν denote spectral distributions of $\left(\mathcal{G}_{1}, e_{1}\right)$ and $\left(\mathcal{G}_{2}, e_{2}\right)$, respectively. Then the spectral distribution of $\left(\mathcal{G}_{1} * \mathcal{G}_{2}, e\right)$ is given by $\mu \boxplus \nu$ (well-known fact, but here it follows from the decomposition).

Definition

By the branch of $\left(V_{1}, e_{1}\right) *\left(V_{2}, e_{2}\right)$ subordinate to $\left(V_{j}, e_{j}\right)$, we shall understand the rooted set $\left(S_{j}, e\right)$, where

$$
S_{j}=\{e\} \cup\left\{v_{1} v_{2} \ldots v_{m} \in V_{1} * V_{2}: v_{m} \in V_{j}^{0}, m \in \mathbb{N}\right\}
$$

By the branch of $\left(\mathcal{G}_{1} * \mathcal{G}_{2}, e\right)$ subordinate to $\left(\mathcal{G}_{j}, e_{j}\right)$, where $j=1,2$, we shall understand the rooted graph $\left(\mathcal{B}_{j}, e\right)$, where \mathcal{B}_{j} is the subgraph of $\mathcal{G}_{1} * \mathcal{G}_{2}$ restricted to the set S_{j}. The concept of 'branches' is due to Quenell.

Binary tree as a subordinate branch

Fig. 5. $\mathbb{T}_{2} \cong \mathcal{B}_{1}$.

Assumptions:
(1) $(\mathcal{A}, \varphi, \psi)$ is a unital algebra with a pair of linear normalized functionals,
(2) \mathcal{A}_{1} is a unital subalgebra of \mathcal{A},
(3) \mathcal{A}_{2} is a non-unital subalgebra with an 'internal' unit 1_{2}, i.e. $1_{2} b=b=b 1_{2}$ for every $b \in \mathcal{A}_{2}$,
(4) $\mathcal{A}_{1}^{0}=\mathcal{A}_{1} \cap \operatorname{ker} \varphi$,
(9) $\mathcal{A}_{2}^{0}=\mathcal{A}_{2} \cap \operatorname{ker} \psi$.

Definition

We say that the pair $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ is free with subordination, or simply s-free, with respect to (φ, ψ) if $\psi\left(1_{2}\right)=1$ and it holds that
(1) $\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=0$ whenever $a_{j} \in \mathcal{A}_{i_{j}}^{0}$ and $i_{1} \neq i_{2} \neq \ldots \neq i_{n}$
(2) $\varphi\left(w_{1} 1_{2} w_{2}\right)=\varphi\left(w_{1} w_{2}\right)-\varphi\left(w_{2}\right) \varphi\left(w_{2}\right)$ for any

$$
w_{1}, w_{2} \in \operatorname{alg}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)
$$

We say that the pair (a, b) of random variables from \mathcal{A} is s-free with respect to (φ, ψ) if the pair of algebras generated by these random variables is s-free with respect to (φ, ψ).

Subordination concept in free probability

Remark

This notion leads to the algebraic (and operator) approach to the concept of analytic subordination in free probability studied by Voiculescu, Biane, Bercovici, Belinschi, Chistyakov, Goetze.

Decomposition of adjacency matrices

Decomposition Theorem

The adjacency matrix of the branch \mathcal{B}_{1} can be decomposed as $A\left(\mathcal{B}_{1}\right)=A^{(1)}+A^{(2)}$, where the strongly convergent series

$$
A^{(1)}=\sum_{n \text { odd }} A_{1}(n), \quad A^{(2)}=\sum_{n \text { even }} A_{2}(n),
$$

are s-free w.r.t. (φ, ψ), where $\varphi()=.\langle. \delta(e), \delta(e)\rangle$ and $\psi()=.\langle. \delta(v), \delta(v)\rangle$ and $v \in V_{1}^{0}$. An analogous decomposition holds for the branch \mathcal{B}_{2} with the summations over odd and even n interchanged.

Orthogonal decomposition of subordinate branches

Theorem [R.L.]

The branch \mathcal{B}_{1} can be decomposed as

$$
\left.\mathcal{B}_{1}=\mathcal{G}_{1} \vdash\left(\mathcal{G}_{2} \vdash\left(\mathcal{G}_{1} \vdash \ldots\right)\right)\right)
$$

An analogous statement holds for the branch \mathcal{B}_{2}.

Corollary

If \mathcal{G}_{1} and \mathcal{G}_{2} are uniformly locally finite, the spectral distribution of \mathcal{B}_{1} is given by the so-called s-free convolution

$$
\mu \boxtimes \nu:=\mu \vdash(\nu \vdash(\mu \vdash \ldots)))
$$

(the right-hand side is understood as the weak limit). An analogous statement holds for the branch \mathcal{B}_{2}.

K-transform decomposition

Corollary

The K-transform of $\mu \boxtimes \nu$ can be expressed in the 'continued composition form'

$$
K_{\mu \boxplus \nu}(z)=K_{\mu}\left(z-K_{\nu}\left(z-K_{\mu}\left(z-K_{\nu}(\ldots)\right)\right)\right)
$$

where the right-hand side is understood as the uniform limit on compact subsets of the complex upper half-plane.

Example

Consider two rooted graphs $\mathcal{G}_{1}, \mathcal{G}_{2}$, whose spectral distributions μ, ν are associated with reciprocal Cauchy transforms

$$
F_{\mu}(z)=z-\alpha_{0}-\frac{\omega_{0}}{z-\alpha_{1}}, \quad F_{\nu}(z)=z-\beta_{0}-\frac{\gamma_{0}}{z-\beta_{1}} .
$$

Then

$$
K_{\mu \boxplus \nu}(z)=\alpha_{0}+\frac{\omega_{0}}{z-\alpha_{1}-\beta_{0}-\frac{\gamma_{0}}{z-\alpha_{0}-\beta_{1}-\frac{\omega_{0}}{z-\alpha_{1}-\beta_{0}-\frac{\gamma_{0}}{\ldots}}}}
$$

and thus, the distribution $\mu \boxminus \nu$ of branch \mathcal{B}_{1} is associated with the sequences of Jacobi parameters

$$
\alpha=\left(\alpha_{0}, \alpha_{1}+\beta_{0}, \alpha_{0}+\beta_{1}, \alpha_{1}+\beta_{0}, \ldots\right), \quad \omega=\left(\omega_{0}, \gamma_{0}, \omega_{0}, \gamma_{0}, \ldots\right)
$$

which correspond to the so-called mixed periodic Jacobi continued fraction of Kato.

Partial decompositions of free products

Theorem [Quenell]

The free product of rooted graphs admits the star decomposition

$$
\mathcal{G}_{1} * \mathcal{G}_{2} \cong \mathcal{B}_{1} \star \mathcal{B}_{2}
$$

and the comb decompositions

$$
\mathcal{G}_{1} * \mathcal{G}_{2} \cong \mathcal{G}_{1} \triangleright \mathcal{B}_{2} \cong \mathcal{G}_{2} \triangleright \mathcal{B}_{1}
$$

Equations for tranforms

Corollary

The following relations hold:

$$
\begin{aligned}
& F_{\mu \boxplus \nu}(z)=F_{\mu}\left(F_{\nu \boxplus \mu}(z)\right)+F_{\nu}\left(F_{\mu \boxplus \nu}(z)\right)-z \\
& F_{\mu \boxplus \nu}(z)=F_{\mu}\left(F_{\nu \boxplus \mu}(z)\right)=F_{\nu}\left(F_{\mu \boxplus \nu}(z)\right)
\end{aligned}
$$

where μ and ν are spectral distributions of rooted graphs \mathcal{G}_{1} and \mathcal{G}_{2}.

Complete decomposition of free products of type I

Theorem

The free product of rooted graphs admits the decomposition

$$
\mathcal{G}_{1} * \mathcal{G}_{2} \cong\left(\mathcal{G}_{1} \vdash\left(\mathcal{G}_{2} \vdash\left(\mathcal{G}_{1} \vdash \ldots\right)\right)\right) \star\left(\mathcal{G}_{2} \vdash\left(\mathcal{G}_{1} \vdash\left(\mathcal{G}_{2} \vdash \ldots\right)\right)\right) .
$$

If \mathcal{G}_{1} and \mathcal{G}_{2} are uniformly locally finite, its spectral distribution is given by the weak limit

$$
\mu \boxplus \nu=(\mu \vdash(\nu \vdash(\mu \ldots))) \uplus(\nu \vdash(\mu \vdash(\nu \ldots)))
$$

and thus

$$
\mu \boxplus \nu=(\mu \boxplus \nu) \uplus(\nu \boxplus \mu)
$$

K-transform decomposition

Remark

The K-transform of $\mu \boxplus \nu$ can be expressed in the 'continued composition form'

$$
\begin{aligned}
K_{\mu \boxplus \nu}(z)= & K_{\mu}\left(z-K_{\nu}\left(z-K_{\mu}\left(z-K_{\nu}(\ldots)\right)\right)\right) \\
& +K_{\nu}\left(z-K_{\mu}\left(z-K_{\nu}\left(z-K_{\mu}(\ldots)\right)\right)\right)
\end{aligned}
$$

where the right-hand side is understood as the uniform limit on compact subsets of the complex upper half-plane.

Complete decomposition of free products of type II

Theorem

The free product of rooted graphs admits the decomposition

$$
\mathcal{G}_{1} * \mathcal{G}_{2} \cong \mathcal{G}_{1} \triangleright\left(\mathcal{G}_{2} \vdash\left(\mathcal{G}_{1} \vdash\left(\mathcal{G}_{2} \vdash \ldots\right)\right)\right)
$$

If \mathcal{G}_{1} and \mathcal{G}_{2} are uniformly locally finite, its spectral distribution is given by the weak limit

$$
\mu \boxplus \nu=\mu \triangleright(\nu \vdash(\mu \vdash(\nu \vdash(\mu \ldots))))
$$

and thus

$$
\mu \boxplus \nu=\mu \triangleright(\nu \boxplus \mu) .
$$

Cauchy transform decomposition

Remark

The Cauchy transform of $\mu \boxplus \nu$ can be expressed in the 'continued composition form'

$$
G_{\mu \boxplus \nu}(z)=G_{\mu}\left(z-K_{\nu}\left(z-K_{\mu}\left(z-K_{\nu}(\ldots)\right)\right)\right)
$$

where the right-hand side is understood as the uniform limit on compact subsets of the complex upper half-plane.

Concluding remarks

(1) We have completed the scheme in which products of rooted graphs are associated with the main notions of noncommutative independence.
(2) We obtained 'complete' decompositions of two types of the free product of graphs and of the free additive convolution.
(3) This method (especially the decomposition of type II) allows to compute $\mu \boxplus \nu$ without using the R-transforms in certain cases.
(4) The approximants of these decompositions give the so-called hierarchy of freeness [R.L.] and the monotone hierarchy of freeness [R.L. \& Salapata].
(0) Our approach contributes new elements to the operator approach to the concept of subordination.
(1) R. Lenczewski, Decompositions of the free additive convolution, arXiv: math.OA/0608236, 2006.
(2) L. Accardi, R. Lenczewski, R. Salapata, Decompositions of the free product of graphs, arXiv: math.CO/0609329, 2006.

